GROWING CELL STRUCTURE AND NEURAL GAS Incremental Neural Networks
نویسندگان
چکیده
Incremental artificial neural networks grow when they learn and shrink when they forget. Competitive Hebbian learning generates the network structure by addition and removal of cells and links. Thus, no network design phase is necessary. The growing cell structure and the growing neural gas network may replace common feed-forward networks in a lot of classification and interpolation tasks.
منابع مشابه
Growing Neural Networks using Soft Competitive Learning
This paper gives an overview of some classical Growing Neural Networks (GNN) using soft competitive learning. In soft competitive learning each input signal is characterized by adapting in addition to the winner also some other neurons of the network. The GNN is also called the ANN with incremental learning. The artificial neural networks (ANN) mapping capability depends on the number of layers...
متن کاملPrediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks
Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...
متن کاملPredicting Force in Single Point Incremental Forming by Using Artificial Neural Network
In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...
متن کاملModeling of Texture and Color Froth Characteristics for Evaluation of Flotation Performance in Sarcheshmeh Copper Pilot Plant, Using Image Analysis and Neural Networks
Texture and color appearance of froth is a discreet qualitative tool for evaluating the performance of flotation process. The structure of a froth developed on the flotation cell has a significant effect on the grade and recovery of copper concentrate. In this work, image analysis and neural networks have been implemented to model and control the performance of such a system. The result reveals...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995